Both Arctic and Antarctic sea ice appear to be heading toward their respective seasonal limits, reaching the lowest extent at the end of summer in the north, and the highest extent as winter ends in the south. In the Antarctic, high variability typically characterizes the period around the maximum, but at present the sea ice extent is more than 1 million square kilometers (386,000 square miles) below the previous record low maximum set in 1986.
Overview of conditions
Retreat of Arctic sea ice cover has been primarily in the central Arctic region north of the Laptev and East Siberian Seas in an area of low sea ice concentration (Figure 1a). A few large areas of open water are present between several areas of higher-concentration sea ice. On the Pacific side, the Beaufort and Chukchi Seas have very little sea ice remaining; on the Atlantic side, both the Svalbard archipelago and Franz Josef Land are largely ice free (Figure 1a). Both passages of the Northwest Passage are largely clear of ice at the resolution of passive microwave satellite data, but likely have patchy ice remaining. Ice blocks the western end of the Parry Channel near M’Clure Strait, but the ice edge has pulled away from the coast in recent days and it appears that there is a narrow ice-free region along the northwest coast of Banks Island.
Antarctic sea ice grew at a much faster-than-average pace through the first eight days of September, increasing at 65,000 square kilometers (25,000 square miles) per day relative to the 1981 to 2010 average rate of 25,000 square kilometers (9,700 square miles) per day (Figure 1c). Much of this expansion occurred in the northeastern Ross Sea and along the Weddell Sea ice front (Figure 1d). However, growth slowed after September 8. If no further net growth occurs, the sea ice maximum will be below 17 million square kilometers (6.56 million square miles) for the first time in the satellite record, and about one million square kilometers (386,000 square miles) below the previous record low maximum of 1986. The five low maximum sea ice extents for Antarctica include 1986, 2002, 2017, 1989, and 2022. High variability is typical of the sea ice maximum period, and further growth is likely from storms or high winds along the vast circumpolar sea ice edge.
Conditions in context
For the first two weeks of September, high air pressure prevailed over northern Siberia, with low pressure over Greenland, which created significant winds along the Eurasian coast (Figure 2a). Air temperatures were generally above average in Western Europe and Scandinavia, and below average in eastern Siberia (Figure 2b). The outlook for a few more days is for continued warm conditions and airflow that may cause further contraction of the low-concentration sea ice.
In Antarctica, a strong high-pressure area over the Peninsula region with counterclockwise airflow helped push sea ice outward along the northwestern Weddell Sea, where the air temperature was quite low (Figure 2c). Low air pressure and below average temperatures in the central and western Ross Sea helped push sea ice outward in the eastern Ross Sea (Figure 2d). Storms will very likely cause the sea ice edge to fluctuate.
Source link